

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών

Phosphoproteomic profiling of the NAFLD/NASH mechanism in a primary human hepatocyte model

Danai Stella Zareifi *^a, Dimitris E Messinis *^a, Angeliki Minia ^b, Vaia Pliaka ^b, Jan Rožanc ^b, Konstadoulakis M Manoussos ^c, John P Bramis ^c, Efstathios A Antoniou ^d, Leonidas G Alexopoulos ^{ab}

*equal contributors

^a School of Mechanical Engineering, National Technical University of Athens

^b ProtATonce Ltd

- ^c 1st Department of Propaedeutic Surgery, Hippokration General Hospital, Medical School, University of Athens
- ^d 2nd Department of Propaedeutic Surgery, Laiko Hospital, University of Athens, School of Medicine, Athens, Greece

Systems Biology and Bioengineering Group - NTUA

Interdisciplinary Research between Engineering, Computer science and Biology

Systems Biology and Bioengineering Group - NTUA Medical Engineering Projects

Systems Biology and Bioengineering Group - NTUA Systems Biology for Liver Disease

Multi-omics data

Liver Disease

- Drug Mode of Action
- Liver Toxicity
- Hepatocellular Carcinoma
- NAFLD

Collaborations

- Virtual Liver
- Hepatosys
- Aachen

Publications

Mitsos et al. **PLoS Comp Biol** (2009) Saez-Rodriguez et al. **Mol Sys Biol** (2009)

Alexopoulos et al. **Mol Cell Prot** (2010) Melas et al. **BMC** *Sys Biology* (2011) Saez-Rodriguez et al. *Science Sig* (2011) Melas et al. *Mol Biosyst* (2012) Mitsos et al. *PLoS ONE* (2012) Melas et al. *Biopharm. & Drug disp.* (2013) Morris et al. *Drug DiscToday* (2013) Melas et al. *PLoS Comp Biol* (2013)

NAFLD/NASH and research approaches

Non-alcoholic fatty liver disease (NAFLD): presence of hepatic steatosis in the absence of excess alcohol consumption and represents a spectrum of disease (simple steatosis, Non-Alcoholic Steatohepatitis (NASH), fibrosis, cirrhosis, hepatocellular carcinoma)

 Limitations
 Cause and disease progression mechanisms still not completely understood
 Image: multi-omic approaches but not on signal transduction level

 No standard *in vitro* models
 No standard *in vitro* models

AIM: Profiling of proteins involved in the signal transduction mechanism of NAFLD in a new *in vitro* model of primary human hepatocytes

In vitro models - NAFLD/NASH induction

Primary Human Hepatocytes → The most relevant in vivo-like liver-based in vitro models

1) Free Fatty Acids (FFAs)

Mimics dietary FFA influx

2) Valproic acid sodium salt (VPA) Causes microvesicular steatosis with no nuclear displacement.

- Impairs mitochondrial β-oxidation.
- Induces the mitochondrial permeability pore opening (lipoprotein secretion)

3) Amiodarone hydrochloride (AMI)

- Decreases the membrane potential
- Inhibits microsomal triglyceride transfer protein
- Inhibits electron chain and enzyme complexes

4) Tetracycline hydrochloride (TET)

- Inhibition of mitochondrial triglyceride transfer protein
- Impairment of β-oxidation
- Decreased evacuation of TGs

5) Tamoxifen citrate (TMX)

- Compromises the electron transport chain
- Decreases the regeneration of oxidized cofactors
- Upregulates fatty acid biosynthesis

Methods Isolation of human hepatocytes

1st step: liver reception, observation and weight

2nd step: perfusion with buffers for flushing liver tissue & liver digestion

3rd step: isolation of fresh hepatocytes – cell counting & viability assessment by trypan blue exclusion

Source: Biopredic International

Methods Experimental design

NAFLD induction - High content screening

NAFLD induction with FFAs

Lipid droplets were stained with Nile Red fluorescent probe and Hoechst 33342 was used for counterstaining cell nucleus.

NAFLD induction with Tamoxifen

NAFLD induction with Amiodarone

NAFLD induction with Tetracycline

NAFLD induction with Valproic Acid

Quantification of intracellular fat accumulation

Treatment

Quantification of ROS Production

Intracellular ROS Production

Treatment

Phosphoproteomic and cytokine release profiling

Phosphoproteomic and cytokine release profiling

FFA Treatment (µM)

	Secreted Proteins										
		CCL5	CXL10	IFNG	IL1A	IL20	IL6	IL8	TNF10	TNFA	
	100	0.87	0.84	0.70	0.93	0.91	0.71	1.09	0.71	0.88	
	200	0.97	1.01	0.87	0.96	0.98	1.11	1.16	0.75	0.83	
	300	0.89	0.76	0.75	1.00	1.00	0.99	1.18	0.78	0.83	
	400	0.90	0.66	0.67	0.77	0.76	0.46	0.95	0.65	0.96	
	500	0.89	0.76	0.72	0.95	0.98	0.73	1.36	0.78	0.87	
	600	0.91	0.80	0.69	0.96	0.96	0.70	1.34	0.68	0.82	
	700	0.85	0.78	0.71	0.94	0.92	0.79	1.43	0.71	0.77	
	800	0.85	0.71	0.61	0.91	0.93	0.72	1.44	0.65	0.77	
	900	0.84	0.68	0.65	0.97	0.90	0.68	1.41	0.66	0.71	
	1000	1.03	0.77	0.73	0.99	0.99	0.78	1.47	0.75	0.77	

	LEGEND					
	value	CV < 20%				
	value	< 0.75				

Phosphoproteins

		AKT1	FAK1	HSBP1	IKBA	JUN	STAT6	WNK1
	100	0.67	0.88	0.66	0.60	0.73	0.75	0.66
Σ	200	0.65	0.83	0.65	0.69	0.76	0.75	0.64
4	300	0.72	0.86	0.71	0.80	0.80	0.81	0.66
ŝnt	400	0.64	0.81	0.67	0.67	0.73	0.67	0.54
ŭ	500	0.66	0.81	0.64	0.66	0.73	0.68	0.57
at	600	0.67	0.86	0.67	0.62	0.75	0.66	0.59
Ire	700	0.69	0.85	0.70	0.68	0.78	0.73	0.66
۲ ۲	800	0.67	0.85	0.76	0.73	0.85	0.71	0.61
Ц,	900	0.67	0.87	0.72	0.70	0.79	0.73	0.60
_	1000	0.62	0.91	0.75	0.70	0.74	0.74	0.60

Fold change of the proteomic measurements of three biological replicates at increasing concentrations of FFAs.

Differences between groups were compared by using Students *t* test.

Conclusion

1 We build *in vitro* model for NAFLD/NASH induced by different DRUS & FFAs

- 2 We quantified NAFLD by ROS and fat accumulation
- 3 We measured signaling effects on the hepatocyte network
- We identifies decreased AKT (known) and Irregular phosphorylation patterns in IKBA, JUN, STAT6 and WNK1 as well as in the secretion of TNFA, TNF10 ad TNFG

MORE ANALYSIS UNDER DEVELOPMENT

Acknowledgments

Antoniou A Efstathios team & Konstadoulakis M Manoussos team

Protatonce Ltd.

Pliaka Vicky, Minia Angeliki, Rožanc Jan

Systems Bioengineering Group